Python: Difference between revisions

From RCSWiki
Jump to navigation Jump to search
 
(63 intermediate revisions by 3 users not shown)
Line 6: Line 6:


== Important Libraries ==
== Important Libraries ==
* '''Pandas''' (0.24.2): https://pandas.pydata.org/
: Manual: http://pandas.pydata.org/pandas-docs/stable/
: Quick start: http://pandas.pydata.org/pandas-docs/stable/getting_started/10min.html
: Pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.
* '''StatsModels''': http://www.statsmodels.org/stable/index.html
: A Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration.
* '''mpi4py''': requires MPI libraries.
== ML ==
* TensorFlow vs PyTorch vs Jax
: https://www.askpython.com/python-modules/tensorflow-vs-pytorch-vs-jax
* '''scikit-learn''': https://scikit-learn.org/stable/
: Simple and efficient tools for data mining and data analysis
* '''[[Tensorflow on ARC | TensorFlow]]''': https://www.tensorflow.org
: An open source software library for high performance numerical computation. Its flexible architecture allows easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and edge devices. Originally developed by researchers and engineers from the Google Brain team within Google’s AI organization, it comes with strong support for machine learning and deep learning and the flexible numerical computation core is used across many other scientific domains.
* '''Keras''' ( The Python Deep Learning library): https://keras.io
: Keras is a high-level neural networks API, written in Python and capable of running on top of [[TensorFlow]], [[CNTK]], or [[Theano]]. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.
* '''PyCaret''': https://pycaret.org/
: PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.
* '''[[PyTorch on ARC | PyTorch]]''': https://pytorch.org/
: An open source machine learning framework that accelerates the path from research prototyping to production deployment.
: On GitHub: https://github.com/pytorch/pytorch
* '''JAX''': https://github.com/google/jax
: Jax is a high performance, numerical computing library which incorporates composable function transformations by Google.
: https://jax.readthedocs.io/en/latest/index.html
: Installation: https://jax.readthedocs.io/en/latest/installation.html
: https://www.assemblyai.com/blog/why-you-should-or-shouldnt-be-using-jax-in-2023/
== High Performance Python ==


* '''NumPy''' (1.16): http://www.numpy.org/
* '''NumPy''' (1.16): http://www.numpy.org/
Line 18: Line 64:




* '''Pandas''' (0.24.2): https://pandas.pydata.org/
* '''Dask''' -- an open source library designed to provide parallelism to the existing Python stack.
: Manual: http://pandas.pydata.org/pandas-docs/stable/
: Dask provides integrations with Python libraries like '''NumPy Arrays''', '''Pandas DataFrames''' and '''scikit-learn'''  
: Quick start: http://pandas.pydata.org/pandas-docs/stable/getting_started/10min.html
: to enable parallel execution across multiple cores, processors and computers,  without having to learn new libraries or languages.
: Pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.
 
* '''Numba''' -- an open-source JIT (Just-in-time) '''compiler for Python'''.
: It can translate a subset of Python and Numpy code into fast machine code.
: It usually only requires the programmer to add some decorators to Python code so that efficient machine code can be produced.
: In addition, some changes may have to be made to avoid using Python features which Numba cannot efficiently translate into machine code.
 
* '''Cython''' -- a programming language that aims to be a '''superset of the Python''' programming language,
: designed to give C-like '''performance''' with code that is written mostly in Python with optional additional C-inspired syntax.
: Cython is a compiled language that is typically used to generate CPython extension modules.
 
== Python and parallel programming ==
 
There are a lot of nuances to implementing parallelism in python depending on your expertise and what you are trying to achieve.
The decision tree on how to implement it depends on a few things:
* If you are comfortable writing in C and using OpenMP or MPI directly, you could write an extension to python with a library interface and you could get very good performance with only high-level logic represented in python commands and low-level operations, parallelism, and inter-process communication represented in C.<br />
 
* If you need to work in python but can use Cython then you can make use of an approach to generating the relevant C code that is done entirely in a python superset that gets precompiled. This can open up multithreading but (as far as we know) not multiprocessing. This is how much of NumPy works.<br />
 
* If you need to work entirely in python but can use common libraries that go beyond the python standard library then there are a lot of options with interesting tradeoffs. At a high level, you can automate decompositions of task graphs in parallel parts with something like DASK (which is mostly useful for task parallel problems with natural data decomposition based parallelism), this still depends on choosing a low-level engine among threading, multiprocessing, and mpi4py. You can generate a spark cluster with pyspark, which also facilitates a simple functional language for expressing the parallelism: [[Apache Spark on ARC]] You can use mpi4py to access an MPI standard based way of starting multiple python processes on multiple nodes.<br />
 
* If you need to work entirely in python and can only use the standard library then you are pretty limited in how parallel the code can be as you almost have to use the threading and multiprocessing libraries. Threading is still limited by the GIL except where it is explicitly escaped in the underlying C code (e.g. using the Py_BEGIN_ALLOW_THREADS macro or the NPY BEGIN THREADS macro). Multiprocessing is not GIL limited but carries around a lot of overhead and is, by default, bound to one node.
 
Just moving all of the heavy lifting to C can produce an enormous speedup.
Many popular C/C++ libraries (e.g. GDAL, FSL, Tensorflow) use a python interface for writing a few lines of high-level logic and the real work happens behind the scenes.
If your code is going to use an interface to a low level fast library, the performance improvement is immediately accessible,
but making the code parallel may be difficult as you have little control on how the things are done inside the library calls.
Also, note that the libraries may have their own parallel programming model implemented.
 
= Installing your own Python =
 
== Using Conda ==
 
You will need a working local '''Conda''' install in your home directory first. If you do not have it yet, please follow [[Conda_on_ARC#Installing_Conda | these instructions]] to have it installed.
 
Once you have your own '''Conda''', activate it with
$ source ~/software/init-conda
 
Ensure it is using the python installed in your home directory
<pre>
(base) $ which python
~/software/miniconda3/bin/python
 
(base) $ python --version
Python 3.9.18
</pre>
This is '''Conda's system python''', we are not going to use it. We are going to install '''our own working python''' into an environment.
 
Create a virtual environment for your project, and request <code>python v3.11.8</code> and <code>pip</code> to be installed into it:
<pre>
(base)$ conda create -n <yourenvname> python=3.11.8 pip
....
....
</pre>
 
Activate the virtual environment
<pre>
(base) $ source activate <yourenvname>
(yourenvname) $
</pre>
 
Try your new <code>python</code> and <code>pip</code>:
<pre>
(yourenvname) $ python --version
Python 3.11.8
 
(yourenvname) $ pip --version
pip 23.3.1 from /home/username/software/miniconda3/envs/pytorch/lib/python3.11/site-packages/pip (python 3.11)
</pre>
 
Install additional Python packages to the virtual environment
(yourenvname) $ conda install [package]
 
At this point you should be able to use your own python with the modules you added to it.
 
You can '''deactivate your python environment''' and '''conda''' with the commands
<pre>
(yourenvname) $ conda deactivate
(base) $ conda deactivate
$
</pre>
 
Your can create additional '''conda environments''' with different versions of python and combinations of software, if you need them.
 
== From Sources ==
 
This is the installation from scratch, from the sources obtained from Python original development web site.
It does '''not''' use '''Conda'''.
 
First, create the directories for the new python installation and the source files:
<pre>
$ cd
$ mkdir software
$ mkdir software/src
 
$ cd software/src
</pre>
Now, get a new python from https://www.python.org/downloads/ as "Gzipped source tarball" and unpack it.
<pre>
$ wget https://www.python.org/ftp/python/3.9.5/Python-3.9.5.tgz
 
$ tar xvf Python-3.9.5.tgz
$ ls -l
 
drwxr-xr-x 16 drozmano drozmano    4096 May  3 09:11 Python-3.9.5
-rw-r--r--  1 drozmano drozmano 25627989 May  3 10:11 Python-3.9.5.tgz
 
$ cd Python-3.9.5
</pre>
 
Python is built with a tool called '''autoconf'''.  
It is manifested by the presence of the <code>configure</code> script in the top directory of the source tree.
You can see the build options with the <code>--help</code> option for it:
<pre>
$ ls
 
aclocal.m4          config.sub    Doc      install-sh  Mac              Modules      Parser  Programs      README.rst
CODE_OF_CONDUCT.md  configure    Grammar  Lib        Makefile.pre.in  netlify.toml  PC      pyconfig.h.in setup.py
config.guess        configure.ac  Include  LICENSE    Misc            Objects      PCbuild  Python         Tools
 
$ ./configure --help | less
...
...
# press "q" to exit the text viewer.
</pre>
The configure script checks for all the necessary prerequisites for the build and creates a <code>Makefile</code>
that controls the build process.
We have to provide all the build options we want on the command line.
In this case, we want to specify the location of our installation in our home directory,
using the <code>--prefix=...</code> option.
We also want to enable '''stable optimization''' to improve python speed.
<pre>
$ ./cofigure --prefix=$HOME/software/python-3.9.5 --enable-optimizations
....
config.status: pyconfig.h is unchanged
creating Modules/Setup.local
creating Makefile
 
# Let us check the new make file
$ ls -l Makefile
 
-rw-r--r-- 1 drozmano drozmano 80751 Jun  8 16:17 Makefile


# Now we are ready to compile and build our own python (we will use 8 CPUs to do that).
# This will take some time.
$ make -j8


* '''scikit-learn''': https://scikit-learn.org/stable/
.....
: Simple and efficient tools for data mining and data analysis
.....
renaming build/scripts-3.9/idle3 to build/scripts-3.9/idle3.9
renaming build/scripts-3.9/2to3 to build/scripts-3.9/2to3-3.9
make[1]: Leaving directory '/home/drozmano/my_software/src/Python-3.9.5'


# Now, install it.
$ make install
.....
.....
Processing /tmp/tmpkh0d736f/pip-21.1.1-py3-none-any.whl
Installing collected packages: setuptools, pip
  WARNING: The scripts pip3 and pip3.9 are installed in '/home/drozmano/software/python-3.9.5/bin' which is not on PATH.
  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
Successfully installed pip-21.1.1 setuptools-56.0.0
</pre>
'''Ta-da!''' You have your own python installed!


* '''StatsModels''': http://www.statsmodels.org/stable/index.html
It is still to early to use it. While it is installed, but the system does not know about it and cannot find it yet.
: A Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration.
We have to create a short script that will initialize our python for our use.
<pre>
$ cd ~/software/


# Use your favourite text editor here.
$ vim init-python
</pre>


* '''TensorFlow''': https://www.tensorflow.org
Here is the <code>init-python-3.9</code> script:
: An open source software library for high performance numerical computation. Its flexible architecture allows easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and edge devices. Originally developed by researchers and engineers from the Google Brain team within Google’s AI organization, it comes with strong support for machine learning and deep learning and the flexible numerical computation core is used across many other scientific domains.
<syntaxhighlight lang=bash>
#! /bin/bash
# ===================================================================================================
ROOT=$HOME/software
PYROOT=$ROOT/python-3.9.5


# ===================================================================================================
PATH=$PYROOT/bin:$PATH


* '''Keras''' ( The Python Deep Learning library): https://keras.io
LD_LIBRARY_PATH=$PYROOT/lib:$LD_LIBRARY_PATH
: Keras is a high-level neural networks API, written in Python and capable of running on top of [[TensorFlow]], [[CNTK]], or [[Theano]]. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.
LIBRARY_PATH=$PYROOT/lib:$LIBRARY_PATH
LD_RUN_PATH=$PYROOT/lib:$LD_RUN_PATH


* '''mpi4py''': requires MPI libraries.
INCLUDE=$PYROOT/include:$INCLUDE
CPATH=$PYROOT/include:$CPATH


* '''Dask''':
MANPATH=$MPICH/share/man:$MANPATH


= Python and parallel programming =
PKG_CONFIG_PATH=$PYROOT/lib/pkgconfig:$PKG_CONFIG_PATH
# ===================================================================================================
export PATH


There are a lot of nuances to implementing parallelism in python depending on your expertise and what you are trying to achieve.
export LD_LIBRARY_PATH
The decision tree on how to implement it depends on a few things:
export LD_RUN_PATH
export LIBRARY_PATH
* How comfortable are you writing in C and using OpenMP or MPI directly? If you are comfortable with this, you could write an extension to python with a library interface and you could get very good performance with only high-level logic represented in python commands and low-level operations, parallelism, and inter-process communication represented in C.


export INCLUDE
export CPATH


* If you need to work in python but can use cython then you can make use of an approach to generating the relevant C code that is done entirely in a python superset that gets precompiled. This can open up multithreading but (as far as I know) not multiprocessing. This is how numpy works.
export MANPATH
export PKG_CONFIG_PATH
# ===================================================================================================
</syntaxhighlight>


To activate our new python we have to <code>source</code> the init script into our current environment,
or into the environment of our batch job.


* If you need to work entirely in python but can use common libraries that go beyond the python standard library then there are a lot of options with interesting tradeoffs. At a high level, you can automate decompositions of task graphs in parallel parts with something like DASK (which is mostly useful for task parallel problems with natural data decomposition based parallelism), this still depends on choosing a low-level engine among threading, multiprocessing, and mpi4py. You can generate a spark cluster with pyspark, which also facilitates a simple functional language for expressing the parallelism: https://rcs.ucalgary.ca/index.php/Apache_Spark_on_ARC. You can use mpi4py to access an MPI standard based way of starting multiple python processes on multiple nodes.
Let us test it.
<pre>
# Before
$ which python3
/usr/bin/python3


$ which pip3
/usr/bin/pip3


* If you need to work entirely in python and can only use the standard library then you are pretty limited in how parallel the code can be as you almost have to use the threading and multiprocessing libraries. Threading is still limited by the GIL. Multiprocessing is not GIL limited but carries around a lot of overhead and is, by default, bound to one node.  
# Init our new python.
$ source ~/software/init-python-3.9


$ which python3
Just moving all of the heavy lifting to C can produce an enormous speedup, so it is worth thinking about what exactly your sponsor requires from python.
~/software/python-3.9.5/bin/python3
Do they need pure python or do they simply need a python interface to your code?
Many popular C/C++ libraries (e.g. GDAL, FSL, Tensorflow) use a python interface for writing a few lines of high-level logic and the real work happens behind the scenes.


= Installing your own Python =
$ which pip3
~/software/python-3.9.5/bin/pip3
</pre>
Success.


= Extending Python =
= Extending Python =
Line 77: Line 311:
= Running Python scripts on ARC =
= Running Python scripts on ARC =


If you have a python script (program) saved as a file, <code>my_code.py</code>,
and you want to run it as a job on the ARC cluster, then you can do this following
the example shown below.
<code>my_code.py</code>:
<syntaxhighlight lang=python>
# =========================================================================
import sys
import os
import socket
# =========================================================================
print("\nPython code: %s" % os.path.basename(sys.argv[0]))
print("\nPython version:\n%s" % sys.version)


print("\nHost name:\n%s" % socket.gethostname())
print("\nCurrent working directory:\n%s" % os.getcwd())
print("")
# =========================================================================
</syntaxhighlight>
Once you have your python code you need create a job script that will
* request resources for the job to run on, as well as 
* run the code on those resources when they become available.
<code>job.slurm</code>:
<syntaxhighlight lang=bash>
#!/bin/bash
# ---------------------------------------------------------------------
#SBATCH --job-name=python_test
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem=1gb
#SBATCH --time=0-01:00:00
# ---------------------------------------------------------------------
module load python/3.10.4
python3 my_code.py
</syntaxhighlight>
Once you have both the files, <code>my_code.py</code> and <code>job.slurm</code>, in the same directory,
<pre>
$ ls -l
-rw-r--r-- 1 drozmano drozmano  487 Dec  8 11:42 my_code.py
-rw-r--r-- 1 drozmano drozmano  342 Dec  9 14:46 job.slurm
</pre>
you can submit your job with the
$ sbatch job.slurm
command.
= Links =
[[ARC Software pages]],
[[Tensorflow on ARC]],
[[PyTorch on ARC]]
[[Category:Software]]
[[Category:ARC]]
[[Category:ARC]]
[[Category:Software]]
{{Navbox ARC}}
{{Navbox Software}}

Latest revision as of 18:55, 25 October 2024

General

Important Libraries

Manual: http://pandas.pydata.org/pandas-docs/stable/
Quick start: http://pandas.pydata.org/pandas-docs/stable/getting_started/10min.html
Pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.


A Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration.


  • mpi4py: requires MPI libraries.

ML

  • TensorFlow vs PyTorch vs Jax
https://www.askpython.com/python-modules/tensorflow-vs-pytorch-vs-jax


Simple and efficient tools for data mining and data analysis
An open source software library for high performance numerical computation. Its flexible architecture allows easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and edge devices. Originally developed by researchers and engineers from the Google Brain team within Google’s AI organization, it comes with strong support for machine learning and deep learning and the flexible numerical computation core is used across many other scientific domains.


Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.


PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.


An open source machine learning framework that accelerates the path from research prototyping to production deployment.
On GitHub: https://github.com/pytorch/pytorch


Jax is a high performance, numerical computing library which incorporates composable function transformations by Google.
https://jax.readthedocs.io/en/latest/index.html
Installation: https://jax.readthedocs.io/en/latest/installation.html
https://www.assemblyai.com/blog/why-you-should-or-shouldnt-be-using-jax-in-2023/

High Performance Python

Manual: https://docs.scipy.org/doc/numpy/user/quickstart.html
Reference: https://docs.scipy.org/doc/numpy/reference/
NumPy is the fundamental package for scientific computing with Python. It contains among other things:
-- a powerful N-dimensional array object
-- sophisticated (broadcasting) functions
-- tools for integrating C/C++ and Fortran code
-- useful linear algebra, Fourier transform, and random number capabilities
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.


  • Dask -- an open source library designed to provide parallelism to the existing Python stack.
Dask provides integrations with Python libraries like NumPy Arrays, Pandas DataFrames and scikit-learn
to enable parallel execution across multiple cores, processors and computers, without having to learn new libraries or languages.
  • Numba -- an open-source JIT (Just-in-time) compiler for Python.
It can translate a subset of Python and Numpy code into fast machine code.
It usually only requires the programmer to add some decorators to Python code so that efficient machine code can be produced.
In addition, some changes may have to be made to avoid using Python features which Numba cannot efficiently translate into machine code.
  • Cython -- a programming language that aims to be a superset of the Python programming language,
designed to give C-like performance with code that is written mostly in Python with optional additional C-inspired syntax.
Cython is a compiled language that is typically used to generate CPython extension modules.

Python and parallel programming

There are a lot of nuances to implementing parallelism in python depending on your expertise and what you are trying to achieve. The decision tree on how to implement it depends on a few things:

  • If you are comfortable writing in C and using OpenMP or MPI directly, you could write an extension to python with a library interface and you could get very good performance with only high-level logic represented in python commands and low-level operations, parallelism, and inter-process communication represented in C.
  • If you need to work in python but can use Cython then you can make use of an approach to generating the relevant C code that is done entirely in a python superset that gets precompiled. This can open up multithreading but (as far as we know) not multiprocessing. This is how much of NumPy works.
  • If you need to work entirely in python but can use common libraries that go beyond the python standard library then there are a lot of options with interesting tradeoffs. At a high level, you can automate decompositions of task graphs in parallel parts with something like DASK (which is mostly useful for task parallel problems with natural data decomposition based parallelism), this still depends on choosing a low-level engine among threading, multiprocessing, and mpi4py. You can generate a spark cluster with pyspark, which also facilitates a simple functional language for expressing the parallelism: Apache Spark on ARC You can use mpi4py to access an MPI standard based way of starting multiple python processes on multiple nodes.
  • If you need to work entirely in python and can only use the standard library then you are pretty limited in how parallel the code can be as you almost have to use the threading and multiprocessing libraries. Threading is still limited by the GIL except where it is explicitly escaped in the underlying C code (e.g. using the Py_BEGIN_ALLOW_THREADS macro or the NPY BEGIN THREADS macro). Multiprocessing is not GIL limited but carries around a lot of overhead and is, by default, bound to one node.


Just moving all of the heavy lifting to C can produce an enormous speedup. Many popular C/C++ libraries (e.g. GDAL, FSL, Tensorflow) use a python interface for writing a few lines of high-level logic and the real work happens behind the scenes. If your code is going to use an interface to a low level fast library, the performance improvement is immediately accessible, but making the code parallel may be difficult as you have little control on how the things are done inside the library calls. Also, note that the libraries may have their own parallel programming model implemented.

Installing your own Python

Using Conda

You will need a working local Conda install in your home directory first. If you do not have it yet, please follow these instructions to have it installed.

Once you have your own Conda, activate it with

$ source ~/software/init-conda

Ensure it is using the python installed in your home directory

(base) $ which python 
~/software/miniconda3/bin/python

(base) $ python --version
Python 3.9.18

This is Conda's system python, we are not going to use it. We are going to install our own working python into an environment.

Create a virtual environment for your project, and request python v3.11.8 and pip to be installed into it:

(base)$ conda create -n <yourenvname> python=3.11.8 pip
....
....

Activate the virtual environment

(base) $ source activate <yourenvname>
(yourenvname) $

Try your new python and pip:

(yourenvname) $ python --version
Python 3.11.8

(yourenvname) $ pip --version
pip 23.3.1 from /home/username/software/miniconda3/envs/pytorch/lib/python3.11/site-packages/pip (python 3.11)

Install additional Python packages to the virtual environment

(yourenvname) $ conda install [package]

At this point you should be able to use your own python with the modules you added to it.

You can deactivate your python environment and conda with the commands

(yourenvname) $ conda deactivate
(base) $ conda deactivate
$

Your can create additional conda environments with different versions of python and combinations of software, if you need them.

From Sources

This is the installation from scratch, from the sources obtained from Python original development web site. It does not use Conda.

First, create the directories for the new python installation and the source files:

$ cd
$ mkdir software
$ mkdir software/src

$ cd software/src

Now, get a new python from https://www.python.org/downloads/ as "Gzipped source tarball" and unpack it.

$ wget https://www.python.org/ftp/python/3.9.5/Python-3.9.5.tgz

$ tar xvf Python-3.9.5.tgz 
$ ls -l

drwxr-xr-x 16 drozmano drozmano     4096 May  3 09:11 Python-3.9.5
-rw-r--r--  1 drozmano drozmano 25627989 May  3 10:11 Python-3.9.5.tgz

$ cd Python-3.9.5

Python is built with a tool called autoconf. It is manifested by the presence of the configure script in the top directory of the source tree. You can see the build options with the --help option for it:

$ ls

aclocal.m4          config.sub    Doc      install-sh  Mac              Modules       Parser   Programs       README.rst
CODE_OF_CONDUCT.md  configure     Grammar  Lib         Makefile.pre.in  netlify.toml  PC       pyconfig.h.in  setup.py
config.guess        configure.ac  Include  LICENSE     Misc             Objects       PCbuild  Python         Tools

$ ./configure --help | less
...
... 
# press "q" to exit the text viewer.

The configure script checks for all the necessary prerequisites for the build and creates a Makefile that controls the build process. We have to provide all the build options we want on the command line. In this case, we want to specify the location of our installation in our home directory, using the --prefix=... option. We also want to enable stable optimization to improve python speed.

$ ./cofigure --prefix=$HOME/software/python-3.9.5 --enable-optimizations
....
config.status: pyconfig.h is unchanged
creating Modules/Setup.local
creating Makefile

# Let us check the new make file
$ ls -l Makefile

-rw-r--r-- 1 drozmano drozmano 80751 Jun  8 16:17 Makefile

# Now we are ready to compile and build our own python (we will use 8 CPUs to do that).
# This will take some time.
$ make -j8

.....
.....
renaming build/scripts-3.9/idle3 to build/scripts-3.9/idle3.9
renaming build/scripts-3.9/2to3 to build/scripts-3.9/2to3-3.9
make[1]: Leaving directory '/home/drozmano/my_software/src/Python-3.9.5'

# Now, install it.
$ make install
.....
.....
Processing /tmp/tmpkh0d736f/pip-21.1.1-py3-none-any.whl
Installing collected packages: setuptools, pip
  WARNING: The scripts pip3 and pip3.9 are installed in '/home/drozmano/software/python-3.9.5/bin' which is not on PATH.
  Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.
Successfully installed pip-21.1.1 setuptools-56.0.0

Ta-da! You have your own python installed!

It is still to early to use it. While it is installed, but the system does not know about it and cannot find it yet. We have to create a short script that will initialize our python for our use.

$ cd ~/software/

# Use your favourite text editor here.
$ vim init-python

Here is the init-python-3.9 script:

#! /bin/bash
# ===================================================================================================
ROOT=$HOME/software
PYROOT=$ROOT/python-3.9.5

# ===================================================================================================
PATH=$PYROOT/bin:$PATH

LD_LIBRARY_PATH=$PYROOT/lib:$LD_LIBRARY_PATH
LIBRARY_PATH=$PYROOT/lib:$LIBRARY_PATH
LD_RUN_PATH=$PYROOT/lib:$LD_RUN_PATH

INCLUDE=$PYROOT/include:$INCLUDE
CPATH=$PYROOT/include:$CPATH

MANPATH=$MPICH/share/man:$MANPATH

PKG_CONFIG_PATH=$PYROOT/lib/pkgconfig:$PKG_CONFIG_PATH
# ===================================================================================================
export PATH

export LD_LIBRARY_PATH 
export LD_RUN_PATH 
export LIBRARY_PATH 

export INCLUDE
export CPATH

export MANPATH
export PKG_CONFIG_PATH
# ===================================================================================================

To activate our new python we have to source the init script into our current environment, or into the environment of our batch job.

Let us test it.

# Before
$ which python3
/usr/bin/python3

$ which pip3
/usr/bin/pip3

# Init our new python.
$ source ~/software/init-python-3.9

$ which python3
~/software/python-3.9.5/bin/python3

$ which pip3
~/software/python-3.9.5/bin/pip3

Success.

Extending Python

Virtual environments

$ python -m venv my_environment

Running Python scripts on ARC

If you have a python script (program) saved as a file, my_code.py, and you want to run it as a job on the ARC cluster, then you can do this following the example shown below.


my_code.py:

# =========================================================================
import sys
import os
import socket

# =========================================================================
print("\nPython code: %s" % os.path.basename(sys.argv[0]))

print("\nPython version:\n%s" % sys.version)

print("\nHost name:\n%s" % socket.gethostname())

print("\nCurrent working directory:\n%s" % os.getcwd())

print("")
# =========================================================================

Once you have your python code you need create a job script that will

  • request resources for the job to run on, as well as
  • run the code on those resources when they become available.


job.slurm:

#!/bin/bash
# ---------------------------------------------------------------------
#SBATCH --job-name=python_test

#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem=1gb
#SBATCH --time=0-01:00:00

# ---------------------------------------------------------------------
module load python/3.10.4

python3 my_code.py

Once you have both the files, my_code.py and job.slurm, in the same directory,

$ ls -l
-rw-r--r-- 1 drozmano drozmano   487 Dec  8 11:42 my_code.py
-rw-r--r-- 1 drozmano drozmano   342 Dec  9 14:46 job.slurm

you can submit your job with the

$ sbatch job.slurm

command.

Links

ARC Software pages, Tensorflow on ARC, PyTorch on ARC