ANSYS: Difference between revisions
Line 202: | Line 202: | ||
echo "Job finished at: `date`" | echo "Job finished at: `date`" | ||
</syntaxhighlight> | </syntaxhighlight> | ||
== Timings == | == Timings == |
Revision as of 18:25, 15 March 2024
Introduction
ANSYS (external link) is a commercial suite of programs for engineering simulation, including fluid dynamics (Fluent and CFX), structural analysis (ANSYS Mechanical) and electromagnetics/electronics software.
Typically, researchers will install ANSYS on their own computers to develop models in a graphical user interface and then run simulations that exceed their local hardware capabilities on ARC.
The software can be downloaded, upon approval, from the IT Software Distribution web site.
ANSYS is available to all U of C researchers with an ARC account, but, with licensing restrictions as outlined in the next section.= Licensing considerations =
For many years, Information Technologies has provided a limited number of license tokens for ANSYS software, sometimes supplemented by contributions from researchers. The software contract is typically renewed annually in August. If you are interested in contributing to the pool of licenses, you can write to the IT Help Desk itsupport@ucalgary.ca and ask that your email be redirected to the IT software librarian.
The discussion that follows relates only to the research version of the software. Note that the conditions of use of the teaching licenses prohibits them from being used for research projects.
At the time of this writing in May 2020, there are 50 basic academic licenses and 512 extended "HPC" license tokens available (with 256 of the latter reserved for a specific research group who purchased their own licenses). The number of tokens available at a given time can be seen by running the following commands on ARC:
module load ansys/2019r2
lmutil lmstat -c 1055@ansyslic.ucalgary.ca -a
For ANSYS Fluent, each job on ARC will use one token of the software feature "aa_r" in the lmstat output. In addition, one license token per core is used of the "aa_r_hpc" type for cores in excess of 16. So, for example, a job using a 40-core node from the cpu2019 partition will use one aa_r token and 24 aa_r_hpc tokens.
Using the fastest hardware available will provide the most value a given number of license tokens, so, using the 40-core compute nodes, selected by specifying the cpu2019 partition in your batch job (see example scripts below), is preferred. However, if there is a shortage of license tokens, you may use just part of a compute node or compute nodes from the older legacy partitions, such as parallel.
ANSYS Fluent on ARC
Researchers using ANSYS on ARC are expected to be generally familiar with ANSYS capabilities, input file format and the use of restart files.
You can use
$ module avail ansys
--------------------- /global/software/Modules/4.6.0/modulefiles -------------------------------
ansys/2019r2 ansys/2020r2 ansys/2021r1 ansys/2024r1
to see the versions of the ANSYS software that have been installed on ARC.
Ansys versions:
ansys/2024r1
-- supported. Works.ansys/2021r1
-- Does not work due to technical problems.ansys/2020r2
-- supported. Works.ansys/2019r2
-- supported. Works.
Creating a Fluent input file
After preparing your model, at the point where you are ready to run a Fluent solver, you save the case and data files and transfer them to ARC. In addition to those files, to run your model on ARC you need an input file containing Fluent text interface commands to specify such parameters as the solver to use, the number of time steps, the frequency of output and other simulation controls.
Typically the main difficulty in getting started with Fluent on ARC is figuring out what text interface commands correspond to the graphical interface commands with which you may be more familiar from using a desktop version of Fluent. At the Fluent command prompt, if you just hit enter the available commands will be shown, similar to:
adapt/ file/ report/
define/ mesh/ solve/
display/ parallel/ surface/
exit plot/ views/
Entering one of those commands and then another enter will give sub-options:
> file
/file>
async-optimize? read-case-data start-journal
auto-save/ read-field-functions start-transcript
binary-files? read-journal stop-journal
confirm-overwrite? read-macros stop-macro
define-macro read-profile stop-transcript
execute-macro read-transient-table transient-export/
export/ set-batch-options write-cleanup-script
import/ show-configuration write-field-functions
read-case solution-files/ write-macros
So, for example, one can discover by exploring these menus that the commands to set the frequency with which data and case files can be automatically stored periodically during a long run are of the form:
/file/auto-save/data-frequency 1000
/file/auto-save/case-frequency if-case-is-modified
Here is an example of a complete text input file in which case and data files are read in, some parameters are set related to the storing of output, the solver is run and data and case files saved at the end of the run.
/file/read-case test.cas
/file/read-data test.dat
/file/confirm-overwrite no
/file/auto-save/data-frequency 1000
/file/auto-save/case-frequency if-case-is-modified
/file/auto-save/root-name test
/solve/dual-time-iterate
22200
150
/file/write-case test.%t.%i.cas
/file/write-data test.%t.%i.dat
Note that blank lines are significant for some commands.
Running ANSYS Fluent batch jobs on ARC
Like other calculations on ARC systems, ANSYS software is run by submitting an appropriate script for batch scheduling using the sbatch command. For more information about submitting jobs, see the ARC Cluster Guide.
The scripts below can serve as a template for your own batch job scripts. Please note that different versions of ANSYS Fluent require different options depending on the version. Different options are also required when Fluent is run on different partitions of the ARC cluster. Typically, only the cpu2019, cpu2021, and the parallel partitions are recommended for Fluent.
The following examples, the input files, elbow3.in
and elbow3.cas
, are used.
They are available on ARC in the directory /global/software/ansys/scripts
.
Ansys Fluent 2020r2
cpu2019 partition
Note that when using the cpu2019 partition (40-core nodes), an n-node ANSYS job will take 40*n-16 license tokens from the aa_r_hpc pool.
When requesting memory for the run, ether request the amount you know the computation needs, or you can use the 4GB per 1 CPU rule of thumb. With this rule you can request 160GB of RAM when requesting 40 CPUs for your job.
fluent2020r2_cpu2019.slurm
:
#!/bin/bash
#-------------------------------------------------------------------------------------------
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=40
#SBATCH --mem=160GB
#SBATCH --time=00:10:00
#SBATCH --partition=cpu2019,cpu2019-bf05
# Fluent job script for elbow example on 40-core ARC cpu2019 partition nodes.
# You may change the time and nodes requests, but, leave ntasks-per-node=40
#-------------------------------------------------------------------------------------------
# 2022-01-21 DR
# -----------------------------------------------------------------------------------------------
module load ansys/2020r2
module load openmpi/4.1.1-gnu
export OPENMPI_ROOT=$(dirname $(dirname `which mpiexec`))
# Create a node list so that Fluent knows which nodes to use.
HOSTLIST=hostlist_${SLURM_JOB_ID}
scontrol show hostnames > $HOSTLIST
echo "Created host list file $HOSTLIST"
echo "Running on hosts:"
cat $HOSTLIST
echo "Using $SLURM_NTASKS cores."
echo "Starting run at: `date`"
echo "Current working directory is `pwd`"
# -----------------------------------------------------------------------------------------------
# Provide the name of the input file and run Fluent here.
# The -pib.infinipath option is required to make fluent run on Intel OPA interconnect.
INPUT=elbow3.in
fluent 3ddp -g -t${SLURM_NTASKS} -cnf=${HOSTLIST} -mpi=openmpi -pib -i $INPUT
# -----------------------------------------------------------------------------------------------
echo "Job finished at: `date`"
Ansys Fluent 2019r2
cpu2019 partition
Note that when using the cpu2019 partition (40-core nodes), an n-node ANSYS job will take 40*n-16 license tokens from the aa_r_hpc pool.
When requesting memory for the run, ether request the amount you know the computation needs, or you can use the 4GB per 1 CPU rule of thumb. With this rule you can request 160GB of RAM when requesting 40 CPUs for your job.
ansys_2019r2_fluent_cpu2019_node.slurm
:
#!/bin/bash
#-------------------------------------------------------------------------------------------
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=40
#SBATCH --mem=160GB
#SBATCH --time=00:10:00
#SBATCH --partition=cpu2019,cpu2019-bf05
# Fluent job script for elbow example on 40-core ARC cpu2019 partition nodes.
# You may change the time and nodes requests, but, leave ntasks-per-node=40 and mem=0
#-------------------------------------------------------------------------------------------
# 2022-01-21 DR - Updated
# 2019-07-16 DSP - Updated for Fluent 2019R2 on ARC
# -----------------------------------------------------------------------------------------------
module load ansys/2019r2
# Create a node list so that Fluent knows which nodes to use.
HOSTLIST=hostlist_${SLURM_JOB_ID}
scontrol show hostnames > $HOSTLIST
echo "Created host list file $HOSTLIST"
echo "Running on hosts:"
cat $HOSTLIST
echo "Using $SLURM_NTASKS cores."
echo "Starting run at: `date`"
echo "Current working directory is `pwd`"
# -----------------------------------------------------------------------------------------------
# Provide the name of the input file and run Fluent here.
# The -pib.infinipath option is required to make fluent run on Intel OPA interconnect.
INPUT=elbow3.in
fluent 3ddp -g -t${SLURM_NTASKS} -cnf=${HOSTLIST} -mpi=ibmmpi -pib.infinipath -i $INPUT
# -----------------------------------------------------------------------------------------------
echo "Job finished at: `date`"
Timings
These timings are provided for reference purpose. They have been obtained on some example system that runs for about 10 minutes on 2 full compute nodes of the cpu2019 partition.
Partition #Nodes #CPUs/Procs MPI Interconnect Walltime Fluent --------------------------------------------------------------------------------------------------- cpu2019 2 80 openmpi vendor eth 10:36 2020r2 openmpi local eth 7:49 2020r2 openmpi local ib 7:53 2020r2 openmpi local ib 8:01 2019r2 ibmmpi vendor eth 8:34 2019r2 ibmmpi vendor ib.infinipath 7:56 2019r2 parallel 8 96 openmpi vendor eth 19:12 2020r2 openmpi vendor ib 13:25 2020r2 openmpi local eth 12:18 2020r2 openmpi local ib 12:25 2020r2
Issues
Cleaning the system after Crashed Jobs
Update, 2021-01: After a major update in December 2020, the job scheduler, SLURM, should be deleting these leftover processes automatically, making the cleaning step unnecessary. This article is kept so far for historical and reference purposes.
There is problem with Fluent contaminating the cluster with leftover processes when a multi-node job crashes on the cluster.
The issue is in that Fluent uses its own set of MPI libraries which do not communicate with the job scheduler on ARC. Therefore, the processes that are spread on the nodes when an MPI job is running are not known to SLURM and SLURM cannot take care of them when the job finishes in a bad way (crashes). If the job finishes in a good way, those processes just terminate normally and there is no problem.
To help with this issue, Fluent creates a script in the working directory which is called cleanup-fluent-….sh that must be run to clean up the system in case when the jobs terminates abnormally. If the job finishes normally, this script is deleted automatically. If the job crashes it never gets to the deletion step and the clean up script stays in the working directory.
The name of the script is cleanup-fluent-node-12345.sh, where node is the node name and 122345 is a number somehow related to the run.
So, if you
- run multi-node Fluent jobs and
- your job crashes and
- you can see that script in the working directory of that job,
you have have to execute that script immediately to clean the system. Like this:
$ ./cleanup-fluent-....sh
The clean up script deletes itself when you run it, this prevents any double cleaning of the system.
Please make sure that you take care of the leftover fluent processes after your jobs are done. This is a serious issue, as the leftover processes slow down other users jobs and will never die on their own.
Support
Please send any questions regarding using ANSYS on ARC to support@hpc.ucalgary.ca.