
Reproducible Data
Management with Datalad
Part 1

David Deepwell
June 12, 2024

Research Data Management

• Research projects are not static:
• Research focus might change
• New data is added
• Data might be discarded
• A project might split or join other projects
• Software is updated
• New analyses are tried
• Data issues are found and dealt with

5

Research Data Management

• Requires time to keep up with changes
• Management of:
• Data (specifically, data versioning)
• Research software
• Scripts and workflows

6

Research Data Management

• How can RDM be made reproducible?
• By recording data provenance

• Data provenance
• A record of file sources and subsequent modifications that have led to a

data state
• What was executed
• On what data
• By whom
• When
• And why

7

Data Provenance
• Data provenance
• A record of file sources and subsequent modifications that have led to a

data state
• Can be viewed as a graph

8

Image
1

mask
data 1

Task 1 Image
2

Image
3

Task 2 Image
4

Data Provenance

9

Image
1

mask
data 1

Task 1 Image
2

Image
3

Task 2 Image
4

Commit 1
Date: 25-05-2024
Author: Bob Smith
Message: Add satellite
image and image mask

Commit 2
Date: 26-05-2024
Author: Bob Smith
Message: Remove
unnecessary image data

Commit 3
Date: 27-05-2024
Author: Alice Jones
Message: Add
infrared image

Commit 4
Date: 28-05-2024
Author: Alice Jones
Message: Overlay infrared
and masked images

DataLad

• DataLad is a distributed data management system built for
research data management

10

DataLad

• DataLad is a distributed data management system built for
research data management
• Tracks data provenance via git and git-annex (version control

systems)
• Handles arbitrarily large files and indefinitely many files
• Example:
• Share the largest library of MRI images in the world

11

DataLad

DataLad

git-
annex

Git

12

• DataLad: Data-oriented wrapper
• Git-annex: Tracks large files
• Git: Version control system

Value of DataLad

13

Record data provenance

Track the history and sources of
data

Ensure data reproducibility

Effortlessly rerun computations
from a long time ago

Support collaboration

Easily share data with colleagues

Project Structure

16

Project Structure

Project

subsection_1

inputs outputs code containers

Subsection_2

17

No one size fits all!

Project

code containers subsection_1

inputs outputs_1 outputs_2 outputs_3

subsection_2

DataLad Dataset

• A collection of folders and files that serve a specific purpose
• Is a git repo
• The collection exists under a directory

• Files/folders above this directory are not tracked by this dataset
• DataLad utilizes the filesystem to track files and folders

18

Dataset Nesting

• Datasets can contain other datasets (a subdataset)
• Nesting can be arbitrarily:
• Deep: dataset within dataset within dataset ...
• Wide: dataset containing multiple datasets

• Datasets have independent history
• A parent dataset specifies the commit of a subdataset to use
• Care is needed to keep parent datasets up-to-date with modifications

made within subdatasets (argument flags exists to help with this)

20

DataLad Usage

22

• The CLI (Command line interface)
• Covered in these sessions

• Python API
• For integrating directly into your software
• Not covered

• A limited GUI also exists (datalad-gooey)
• WARNING: DataLad does not work well with Windows
• If using Windows, it is recommended to use WSL

Demo!

23

Create a Dataset

• Situation:
• A researcher is starting a new clinical study
• Plan to record data provenance to track the changing states of the

project
• Subdatasets will be used to isolate “patient” data and enable their re-

use in other projects

24

Part 1 Dataset End State

BID

code patient_1

inputs outputs

patient_2

inputs outputs
25

• BID: Brisk Instruction on DataLad

• Dataset

Create Project

• Create DataLad dataset:
• datalad create --cfg-proc text2git $study_dir

• Create subdataset
• datalad create --dataset .. --cfg-proc text2git
inputs

• Show datasets
• datalad subdatasets

26

Add and Commit Data

• Add data to project
• Before committing changes, check the state of the project to

confirm changes
• datalad status

• Commit changes
• datalad save -m "Add meaningful commit message"

27

Commit in Subdatasets

• Subdatasets are separate git repos and require their own
commits
• The parent dataset will need updating to the newest version of

the subdataset

28

Add File to the Annex

• The previous data were text files and added to the git repo
• Add and commit a binary file (use recursive flag)
• datalad save -r

• This file is protected and requires unlocking before making
changes
• datalad unlock file.bin

• Once finished changing, lock file
• git annex lock file.bin

29

Additional support

• Access to slides and Demo code will be posted on the RCS wiki
• Learn more at www.datalad.org
• For more research data management support:
• Library: research.data@ucalgary.libanswers.com
• RCS: support@hpc.ucalgary.ca

• Session survey: rcs.ucalgary.ca/survey

30

http://www.datalad.org/
mailto:research.data@ucalgary.libanswers.com
mailto:support@hpc.ucalgary.ca

DataLad - Part 2

41

Background

• From Part 1:
• Data provenance
• DataLad purpose and goals
• Dataset organization guidelines
• Created and configured a parent dataset
• Added subdatasets (each associated with a patient)
• Populated subdatasets with data
• Explored dataset organization and the data provenance log

42

Part 1 Dataset End State

BID

code patient_1

inputs outputs

patient_2

inputs outputs
45

• BID: Brisk Instruction on DataLad

• Dataset

Run a command

• Situation:
• Record the execution of a script or software application
• The record includes:

• Input files used
• Output files generated
• Optional flags used by tool or software

• DataLad command:
• datalad run

• Check the git log:
• git log

46

Rerun a command

• Situation:
• 6 months after running the analysis on patient 1 you notice that the

input data has an error
• How do you rerun the analysis after fixing the data? Especially if there

are many analysis routines which depend on that data.

47

Rerun a command

• Situation:
• 6 months after running the analysis on patient 1 you notice that the

input data has an error
• How do you rerun the analysis after fixing the data? Especially if there

are many analysis routines which depend on that data.
• Without DataLad:

• Try to remember what command(s) used (and parameters to the command(s))
• If recorded the command, do you remember where that record was? What if the

colleague who initially ran the command is now gone?
• With Datalad:

• Everything is recorded in the dataset, so simply rerun the analysis

48

Rerun a command

• Scenario:
• "Fix" the data error:

• Replace all instances of 4 with 3 in inputs/sample_01.txt for patient 1
• Save the “fixed” data
• Find commit associated with the first run that had this file as an input
• Rerun the analysis (in the subdataset):

• datalad rerun $RUN_COMMIT
• This will only rerun that commit, to rerun everything since that commit use:

• datalad rerun --since=$RUN_COMMIT

• Update the parent dataset to the new subdataset state

• Check the git log:
• git log 49

Add external dataset/files

• Situation:
• Your research uses publicly available data
• How is this data added to the dataset?

50

Add external dataset/files

• Scenario 1 - Data is already a Datalad dataset:
• Add dataset

• datalad install
• Only installs the dataset provenance and file references, does not add the

annexed files
• Get data

• datalad get
• View data

• How much data is stored locally
• datalad status --annex all

• Where data is located
• git annex whereis

51

Add external dataset/files

• Scenario 2 - Data is an internet file:
• Add file

• datalad download-url
• Adds the file and records the url
• Does not track the history of the file before it was posted to the web

52

Datalad siblings

• Datalad sibling: A known dataset clone of a DataLad dataset
• Scenario 1: Distribute work between laptop and lab machine or HPC
• Scenario 2: Collaborate with a colleague

53

Datalad sibling

• Scenario:
• Create a sibling

• datalad install or datalad clone
• On sibling:

• Create case 3
• Add and save data to case 3
• Run analysis on case 3

• On original dataset
• View siblings (notice that the sibling is not present)

• datalad siblings
• Add sibling

• datalad siblings add

54

Access content on sibling

• Scenario (on original dataset):
• Make dataset aware of sibling modifications

• datalad update --sibling lab_computer --how fetch
• View changes between siblings

• datalad diff
• git diff

• Merge changes from sibling
• datalad update --sibling lab_computer --how merge

• Get contents
• datalad get

55

Part 2 Dataset end state

56

• BID: Brisk Instruction on DataLad

BID

code patient_1

inputs outputs

patient_2 patient_3
(Colab) patient_web other

Review

• Provenance and data organization practices
• Created & configured an extendable dataset using subdatasets
• Added code and data to the subdatasets
• Recorded provenance of analysis scripts
• Viewed the data provenance
• Rerun scripts on “fixed” data
• Added an external dataset and data
• Created and shared data between siblings

57

Next Steps

• Containerized tasks
• Wrap each tool into a container
• Simplifies data reproducibility and tool sharing

• Workflows
• Automate a collection of tasks

• RIA (Remote Indexed Archive)
• Acts like Github/GitLab

• Alternative data storage
• S3, Dropbox, Microsoft OneDrive, SMB

58

Additional support

• Access to slides and Demo code will be posted on the RCS wiki
• Learn more at www.datalad.org
• For more research data management support:
• Library: research.data@ucalgary.libanswers.com
• RCS: support@hpc.ucalgary.ca

• Session survey: rcs.ucalgary.ca/survey

59

http://www.datalad.org/
mailto:research.data@ucalgary.libanswers.com
mailto:support@hpc.ucalgary.ca

